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The unitary rational orbifold conformal field theories in the alge-
braic quantum field theory and subfactor theory framework are
formulated. Under general conditions, it is shown that the orbifold
of a given unitary rational conformal field theory generates a
unitary modular category. Many new unitary modular categories
are obtained. It is also shown that the irreducible representations
of orbifolds of rank one lattice vertex operator algebras give rise
to unitary modular categories and determine the corresponding
modular matrices, which has been conjectured for some time.

1. Introduction

Cosets and orbifolds are two methods of producing new
two-dimensional conformal field theories from given ones

(1). In refs. 2–5, unitary coset conformal field theories are
formulated in the algebraic quantum field theory and subfactor
theory (6) framework, and such a formulation is used to solve
many questions beyond the reach of other approaches. The main
purpose of this paper is to formulate unitary orbifold conformal
field theories in the same framework and to give some applica-
tions of this formulation.

There is another approach to conformal field theories by using
the theory of vertex operator algebras (cf. refs. 7 and 8). In the
case of orbifolds, this has been studied, for example, in refs. 9 and
10. Although there are various advantages to these different
approaches, our main results, Theorems 4.3 and 5.4, have not
been obtained previously by other methods.

Under general conditions, as specified in Theorem 4.3, it is
shown that the orbifold of given unitary rational conformal field
theories generates a unitary modular category. Theorem 4.3 gives
a large family of new unitary modular categories, which can be
found in Sections 5 and 6. As an application of this general
theory, it is shown in Theorem 5.4 that the irreducible represen-
tations of orbifolds of rank one lattice vertex operator algebras
give rise to unitary modular categories [hence a unitary three-
dimensional topological quantum field theory, cf. ref. 11] and the
corresponding modular matrices are determined. More pre-
cisely, the simple objects of the modular categories are in
one-to-one correspondence with the irreducible representations
of these vertex operator algebras, which were classified in ref. 10.
These simple objects and the modular matrices first appeared as
examples in ref. 12 on the basis of certain heuristic arguments,
and these examples can be clearly interpreted as a conjecture on
the existence of certain unitary modular categories with the
same modular matrices. Theorem 5.4 thus confirms this
conjecture.

2. Preliminaries
First, the notion of irreducible conformal precosheaf and its
covariant representations is recalled, as described in ref. 13.

By an interval, I shall always mean an open connected subset
I of S1 such that I and the interior I9 of its complement are
nonempty. I shall denote by ( the set of intervals in S1. I shall
denote by PSL(2, R) the group of conformal transformations on
the complex plane that preserve the orientation and leave the
unit circle S1 globally invariant. Denote by G the universal
covering group of PSL(2, R). Notice that G is a simple Lie group
and has a natural action on the unit circle S1.

Denote by R(q) the (lifting to G of the) rotation by an angle
q. This one-parameter subgroup of G will be referred to as
rotation group (denoted by Rot) in the following. An irreducible

conformal precosheaf ! of von Neumann algebras on the inter-
vals of S1 is a map

I 3 !~I!

from ( to the von Neumann algebras on a separable Hilbert
space * that satisfies the following properties:

A. Isotony. If I1, I2 are intervals and I1 , I2, then

!~I1! , !~I2!.

B. Conformal invariance. There is a nontrivial unitary repre-
sentation U of G on * such that

U~g!!~I!U~g!* 5 !~gI!, g [ G, I [ (.

C. Positivity of the energy. The generator of the rotation
subgroup U(R(q)) is positive.

D. Locality. If I0, I are disjoint intervals, then !(I0) and A(I)
commute. The lattice symbol ~ will denote ‘‘the von Neu-
mann algebra generated by.’’

E. Existence of the vacuum. There exists a unit vector V
(vacuum vector), which is U(G) invariant and cyclic for
~I[(!(I).

F. Irreducibility. The only U(G)-invariant vectors are the scalar
multiples of V.

The term irreducibility refers to the fact (cf. Proposition 1.2 of
ref. 13) that under the assumption F ~I[(!(I) 5 B(*).

A covariant representation p of ! is a family of representations
pI of the von Neumann algebras !(I), I [ ( on a separable
Hilbert space *p and a unitary representation Up of the covering
group G of PSL(2, R), such that the following properties hold:

I , I# f pI#u!~I! 5 pI ~isotony!adUp~g!zpI

5 pgIzadU~g! ~covariance!.

A covariant representation p is called irreducible if
~I[(p(!(I)) 5 B(*p). By our definition, the irreducible
conformal precosheaf is in fact an irreducible representation
of itself, and we will call this representation the vacuum
representation.

Let H be a simply connected simply-laced compact Lie group.
By Theorem 3.2 of ref. 14, the vacuum positive energy repre-
sentation of the loop group LH (cf. refs. 15 or 16) at level k gives
rise to an irreducible conformal precosheaf denoted by !Hk

. By
Theorem 3.3 of ref. 14, every irreducible positive energy repre-
sentation of the loop group LH at level k gives rise to an
irreducible covariant representation of !Hk

. When Hk , Gl is a
connected subgroup of a simply connected Lie group, Proposi-
tion 2.2 in ref. 2 gives an irreducible conformal precosheaf, which
will be denoted by !GlyHk

, and this is referred to as the coset
conformal precosheaf. We will see such examples in Section 4.

This paper was submitted directly (Track II) to the PNAS office.

‡E-mail: xufeng@math.ucr.edu.

Article published online before print: Proc. Natl. Acad. Sci. USA, 10.1073ypnas.260375597.
Article and publication date are at www.pnas.orgycgiydoiy10.1073ypnas.260375597

PNAS u December 19, 2000 u vol. 97 u no. 26 u 14069–14073

M
A

TH
EM

A
TI

CS



Next we will recall some of the results of ref. 17 and introduce
notations.

Let {[ri], i [ I} be a finite set of equivalence classes of
irreducible covariant representations of an irreducible confor-
mal precosheaf with finite index. For the definitions of the
conjugation and composition of covariant representations, see
Section 4 of ref. 14 or Section 2 of ref. 13.

Suppose this set is closed under conjugation and composition.
We will denote the conjugate of [ri] by [rı#] and the identity
sector by [1] if no confusion arises and let Nij

k 5 ^[ri][rj], [rk]&.
Here ^x, y& denotes the dimension of the space of intertwinners
from x to y [denoted by Hom(x, y)] for any representations x and
y (by Theorem 2.3 of ref. 13, we do not have to distinguish
between local and global intertwinners here). We will denote by
{Te} a basis of isometries in Hom(rk, rirj). The univalence of ri
and the statistical dimension of (cf. Section 2 of ref. 13) will be
denoted by vri

and dri
respectively.

Let fi be the unique minimal left inverse of ri; define:

Yij :5 dri
drj

fj~«~rj, ri!*«~ri, rj!*!,

where «(rj, ri) is the unitary braiding operator (cf. ref. 13).
Define s̃ :5 ¥idri

2
vri

21. If the matrix (Yij) is invertible, by
Proposition on p. 351 of ref. 17, s̃ satisfies us̃u2 5 ¥idri

2 . Suppose
s̃ 5 us̃uexp(ix), x [ R. Define matrices

S :5 us̃u 2 1Y, T :5 CDiag~vri
!,

where C :5 exp(i(xy3)). Then these matrices satisfy the alge-
braic relations:

SS† 5 TT† 5 id ,

TSTST 5 S,

S2 5 Ĉ, TĈ 5 ĈT 5 T,

where Ĉij 5 dij is the conjugation matrix. Moreover,

Nij
k 5 O

m

SimSjmS*km

S1m
. [1]

Eq. 1 is known as the Verlinde formula, which determines the
fusion rules Nij

k from the S matrix.

3. The Orbifolds
Let ! be an irreducible conformal precosheaf on a Hilbert space
*, and let G be a finite group. Let V : G 3 U(*) be a faithful§
unitary representation of G on *.

Definition 3.1: We say that G acts properly on ! if the following
conditions are satisfied:

(i) For each fixed interval I and each g [ G, ag(a) :5
V(g)aV(g*) [ !(I), @a [ !(I);

(ii) For each g [ G, V(g)V 5 V, @g [ G.

Remark 3.1: As pointed out to us by Roberto Longo, conditions
i and ii above imply that for each g [ G and h [ G, [V(g), U(h)]
5 0 (cf. ref. 18), which is a condition we initially added in
Definition 3.1. However, in all known examples, all three con-
ditions above are easily checked.

Suppose a finite group G acts properly on ! as above. For
each interval I, define @(I) :5 {a [ !(I)uV(g)aV(g*) 5 a, @g [
G}. Let *0 5 {x [ *uV(g)x 5 x, @g [ G} and P0, the projection
from * to *0. Notice that P0 commutes with every element of
@(I) and U(g), @g [ G.

Define !G(I) :5 @(I)P0 on *0. The unitary representation U
of G on * restricts to an unitary representation (still denoted by
U) of G on *0. Then by using the definitions, one can check the
following:

PROPOSITION 3.2. The map I [ (3 !G(I) on *0 together with
the unitary representation (still denoted by U) of G on *0 is an
irreducible conformal precosheaf.

The irreducible conformal precosheaf in Proposition 3.2 will
be denoted by !G and will be called the orbifold of ! with respect
to G.

Remark 3.3: The net @(I) , !(I) is a standard net of inclusions
(cf. ref. 19) with conditional expectation « defined by

« :5
1

uGu O
g

ag~a!, ; a [ !~I!.

Note that « has finite index. We can therefore apply the theory
in ref. 20 (also cf. refs. 21 and 22) to this setting. It follows, for
example, that if G acts properly on ! as in Definition 3.1, then
for each I, the action of G on !(I) is outer, i.e., @(I)9 ù !(I) .
C, where @(I) is the fixed point subalgebra of !(I) under the
action of G.

4. Complete Rationality
As in ref. 13, by an interval of the circle, we mean an open

connected proper subset of the circle. If I is such an interval, then
I9 will denote the interior of the complement of I in the circle.
We will denote by ( the set of such intervals. Let I1, I2 [ (. We
say that I1, I2 are disjoint if I#1 ù I#2 5 À, where I# is the closure
of I in S1. When a I1, I2 are disjoint, I1 ø I2 is called a
1-disconnected interval in ref. 23. Denote by (2 the set of unions
of disjoint 2 elements in (. Let ! be an irreducible conformal
precosheaf, as in Section 2.1. For E 5 I1 ø I2 [ (2, let I3 ø I4
be the interior of the complement of I1 ø I2 in S1, where I3, I4
are disjoint intervals. Let

!~E! :5 A~I1! ~ A~I2!, !̂~E! :5 ~A~I3! ~ A~I4!!9.

Note that !(E) , !̂(E). Recall that a net ! is split if !(I1) ~
!(I2) is naturally isomorphic to the tensor product of von
Neumann algebras !(I1) R !(I2) for any disjoint intervals I1,
I2 [ (. ! is strongly additive if !(I1) ~ !(I2) 5 !(I), where I1
ø I2 is obtained by removing an interior point from I.

Definition 4.1: (complete rationality of ref. 24). ! is said to be
completely rational, or m rational, if ! is split, strongly additive,
and the index [!̂(E) : !(E)] is finite for some E [ (2. The value
of the index [!̂(E) : !(E)] (it is independent of E by Proposition
5 of ref. 24) is denoted by m! and is called the m index of !.

PROPOSITION 4.2. Let ! be an irreducible conformal precosheaf,
and let G be a finite group acting properly on !. Suppose that !
is split and strongly additive. Then !G is also split and strongly
additive.

Proof: It follows from the definitions that !G is split.
Let I be an interval and I1, I2 be the connected components

of a set obtained from I by removing an interior point of I. To
show that !G is strongly additive, it is sufficient to show that
!(I1) ~ @(I2) 5 !(I). Let us show that !(I1) ~ @(I2) 5 !(I).
First note that [!(I) : !(I1) ~ @(I2)] , `. In fact, let I2

(n) ,
I2 be an increasing sequence of intervals such that I2

(n) have one
boundary point in common with I2, I#1 ù I#2

(n) 5 À, and ønI2
(n) 5

I2. By the additivity of the conformal net ! (cf. ref. 13), we have
that !(I1) ~ @(I2

(n)) [respectively !(I1) ~ !(I2
(n))] are increas-

ing sequences of von Neumann algebras such that

~n!~I1! ~ @~I2
~n!! 5 !~I1! ~ @~I2!, ~n!~I1! ~ !~I2

~n!!

5 !~I1! ~ !~I2! 5 !~I!,§If V : G 3 U(*) is not faithful, we can take G9 : 5 GykerV and consider G9 instead.
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where we have used the assumption that ! is strongly additive.
By the splitting property, we have

@!~I1! ~ !~I2
~n!! : !~I1! ~ @~I2

~n!!#

5 @!~I1! ^ !~I2
~n!! : !~I1! ^ @~I2

~n!!# 5 uGu.

It follows (cf. Proposition 3 of ref. 24) that [!(I1) : !(I1) ~
@(I2)] # uGu.

So there exists a faithful normal conditional expectation «̃ :
!(I) 3 !(I1) ~ @(I2). Note that

@~I2! , «̃~!~I2!! , !~I91! ù !~I! 5 !~I2!,

and so «̃(!(I2)) in an intermediate von Neumann algebra
between @(I2) and !(I2). So (cf. ref. 25 or refs. therein) there
exists a subgroup K of G such that «̃(!(I2)) is the pointwise fixed
subalgebra of !(I2) under the action of K. Because @(I2) ,
!(I2) is irreducible by Remark 3.3, «̃(!(I2)) , !(I2) is also
irreducible, and it follows that there exists a unique conditional
expectation from !(I2) to «̃(!(I2)), given by

«̃~x2! 5
1

uKu O
k [ K

ak~x2!.

Let us show that K is the trivial subgroup, i.e., if k [ K, then k
is the identity element of G.

Let v [ !(I2) be the isometry (cf. Section 2 of ref. 19) such
that

«̃~x2v*!v 5 v*«̃~vx2! 5
1

uKux2, «~vv*! 5
1

uKu .

Define a map g̃ : !(I) 3 !(I1) ~ @(I2) by:

g̃~x! :5 uKu«̃~vxv*!, ; x [ !~I!.

One checks easily that

g̃~x1! 5 x1, g̃~x2x92! 5 g̃~x2!g̃~x92!, ; x1 [ !~I1!, x2, x92 [ !~I2!.

It follows that g̃(xy) 5 g̃(x)g̃(xy) for any x, y [ !(I), because
!(I) is generated by two commuting subalgebras A(I1) and
A(I2).

For any k [ K, define vk 5 ak(v) and

ãk~x! 5 v*kg̃~x!vk, ; x [ !~I!.

Then one checks that

ãk~x1! 5 x1, ãk~x2x92! 5 ak~x2!ak~x92!, ãk~ãk 2 1x2!

5 x2, ; x1 [ !~I1!, x2, x92 [ !~I2!.

It follows that

ãk~xy! 5 ãk~x!ãk~xy!

for any x, y [ !(I), because !(I) is generated by two commuting
subalgebras A(I1) and A(I2). One can also check similarly
ãk(ãk21(x)) 5 x, @x [ !(I). So ãk is an automorphism of !(I).
Because !(I) is a type III factor, there exists a unitary operator
Uk [ B(H0) such that ãk(x) 5 UkxU*k, @x [ !(I). Because
ãk(x1) 5 x1, @x1 [ !(I1), we have Uk [ !(I1)9 5 !(I91) by Haag
duality (cf. Section 2 of ref. 13).

If for all unitary U9 [ !(I9), (UkU9V, V) 5 0, then (U9V,
U*kV) 5 0, and it follows that (!(I9)V, U*kV) 5 0. Because
!(I9)V is dense in * by the Reeh–Schlieder theorem (cf. ref.
13), it follows that U*kV 5 0, which implies U*k 5 0 by using the
Reeh–Schlieder theorem again because U*k [ !(I91). Hence

there exists a unitary U9 [ !(I9) such that (UkU9V, V) Þ 0.
Note that !(I9) , !(I91). Replacing Uk by UkU9 if necessary, we
may assume that (UkV, V) Þ 0.

Let gn [ G be a sequence of elements, such that gnI91 5 I91, and
gnI2 is an increasing sequence of intervals containing I2, i.e., I2
, gnI2 , gn11I2, and øngnI2 5 I91 (one may take gn to be a
sequence of dilations). By applying Ad(U(gn)) to the equation

Ukx2 5 ak~x2!Uk,

and by using ak(Ad(U(gn))x2) 5 Ad(U(gn))(ak(x2)), we get

Ad~U~gn!!~Uk!Ad~U~gn!!~x2!

5 ak~Ad~U~gn!!x2!Ad~U~gn!!~Uk!.

It follows that

Ad~U~gn!!~Uk!x2
~n! 5 ak~x2

~n!!Ad~U~gn!!~Uk!, ; x2
~n! [ !~gnI2!.

Let U be a weak limit of Ad(U(gn))(Uk). Note that

U [ !~I91!,

because Ad(U(gn))(Uk) [ !(I91) by our choice of gn. Because
(Ad(U(gn))(Uk)V, V) 5 (UkV, V) Þ 0, where we use the fact
that V is invariant under the action of U(gn), it follows that

~UV, V! 5 ~UkV, V! Þ 0,

so U Þ 0, and we have

Ux2
~n! 5 ak~x2

~n!!U, ; x2
~n! [ !~gnI2!.

Because øngnI2 5 I91, ~n!(gnI2) 5 A(I91) by the additivity of the
conformal net ! (cf. ref. 13), it follows that

U Þ 0, U [ !~I91!, Ux 5 ak~x!U, ; x [ !~I91!.

Recalling that ak is an automorphism of !(I91) and !(I91) is a
factor, it follows that

UU* 5 cid 5 U*U, c Þ 0.

Changing U into (1y=c)U if necessary, we may assume that U
is unitary, and so we have

ak~x! 5 AdU~x!, ; x [ !~I91!.

So U [ B(I91)9 ù !(I91), and by Remark 3.3, AdU(x) 5 x 5 ak(x),
@x [ !(I91). It follows that VkxV 5 xV, @x [ !(I91), and by the
Reeh–Schlieder theorem, Vk 5 id, so k is the identity element
in G. Because k [ K is arbitary, we have shown that K is the
trivial group.

So !(I1) ~ @(I2) 5 !(I), and

@~I! 5 «~!~I1!! 5 «~!~I1! ~ @~I2!! 5 @~I1! ~ @~I2!.

THEOREM 4.3. Let ! be an irreducible conformal precosheaf,
and let G be a finite group acting properly on !. Suppose ! is
completely rational or m rational as in Definition 4.1. Then there are
only a finite number of irreducible covariant representations of !G

and they give rise to a unitary modular category as defined in II.5
of ref. 11 by the construction as given in Section 1.7 of ref. 5.

Proof: This follows immediately from Proposition 4.2, Corre-
lation 32 of ref. 24 and (2) of Correlation 1.7.3 of ref. 5.

Remark 4.3: An irreducible covariant representation of !G is
called an untwisted representation if it appears as a summand in
the restriction to !G of a covariant representation of !. A
representation is called twisted if it is not untwisted. By com-
puting the m indices, we can show that the set of twisted
representations of !G is not empty. This fact is first noticed in
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ref. 24 under the assumption that !G is strongly additive. Note
that this is very different from the case of cosets (cf. ref. 4,
Correlation 3.2, where it was shown that under certain conditions
there are no twisted representations for the coset).

5. A Class of Orbifolds
The irreducible conformal precosheaf !U(1)2l

associated with
LU(1) at level 2l is studied in Section 3.5 of ref. 5. We have
m!U(1)2l 5 2l, and there are exactly 2l irreducible representations
of !U(1)2l

which is labeled by integer k, 0 # k # 2l 2 1. By
identifying R2M 5 (x, y) 3 x 1 iy [ CM, where x, y are column
vectors with M real entries, we have the following natural
inclusion LSU(M)1 3 LU(1)M , LSpin(2M)1, where U(1) acts
on CM as a complex scalar, and the subscripts are the levels of
the representations. Also note that we have natural inclusions
LSpin(M)2 , LSU(M)1 , LSpin(2M)1. Define J :5 (IdM,
2IdM) [ SO(2M) and lift it to Spin(2M). Note that for A [
SU(M), JAJ 5 A# , and JAJ 5 A if A [ Spin(M). From the
definition, one can check that AdJ generates a proper Z2 action
on !SU(M)1

, and by using the branching rules for the inclusion
LSpin(M)2 , LSU(M)1 in Section 4 of ref. 26, we can prove the
following:

LEMMA 5.1.

!Spin~M!2
. !SU~M!1

Z2 .

Similarly, by using branching rules, we can prove the following:
LEMMA 5.2.

!Spin~2M!2ySpin~M!1
. !U~1!M

.

One can use Lemmas 5.1, 5.2, Theorem 4.3, and the ideas of
Section 4 of ref. 4 to determine the modular matrices as defined
in Section 2 for !Spin(M)2

and the net

!Spin~M!1 3 Spin~M!1ySpin~M!2

associated to the diagonal coset LSpin(M)2 , LSU(M)1 3
LSpin(M)1. Details will appear elsewhere.

To state the results for the net !Spin(M)13Spin(M)1ySpin(M)2
, recall

the set of integrable weights of irreducible positive energy
representations of LSpin(2l) at level k is given by:

P 1
~k! 5 $l 5 l0L0 1 l1L1 1 . . .ll 2 1Ll 2 1 1 llLluli [ N,

l0 1 l1 1 2~l2 1 . . . 1 ll 2 2! 1 ll 2 1 1 ll 5 k%.

When l is even, this set admits a Z2 3 Z2 automorphism
generated by As, Av, where As, Av are given by:

As~l0L0 1 l1L1 1 . . .ll 2 1Ll 2 1 1 llLl! 5 l0Ll 1 l1Ll 2 1

1 . . .ll 2 1L1 1 llL0, Av~l0L0 1 l1L1 1 . . .ll 2 1Ll 2 1 1 llLl!

5 l0L1 1 l1L0 1 l2L2 1 . . .ll 2 2Ll 2 2 1 ll 2 1Ll 1 llLl 2 1.

When l is odd, this set admits a Z4 automorphism generated by
As, where As is given by

As~l0L0 1 l1L1 1 . . .ll 2 1Ll 2 1 1 llLl! 5 l0Ll 1 l1Ll 2 1

1 l2Ll 2 2 1 . . .ll 2 2L2 1 ll 2 1L0 1 llL1.

These automorphisms will be called diagram automorphisms.
Note that the set of diagram automorphisms is Z2 3 Z2 when l
is even and Z4 when l is odd.

Theorem 4.6 of ref. 2, which concerns the ring structure of
general diagonal cosets of type A, now holds for our diagonal
coset, with the action of ZN there replaced by Z2 3 Z2 when
l is even and by Z4 when l is odd, because the proof of ref. 2

applies verbatim. As in Section 4.3 of ref. 2, I denote by [L̇, L̈;
L] the orbit of (L̇, L̈; L) under the diagonal action of the
diagram automorphisms, where (L̇, L̈) are the integrable
weights (both at level 1) of LSpin(M) 3 LSpin(M). The
following is a complete list of irreducible representations of
!Spin(M)13Spin(M)1ySpin(M)2

.

1 :5 @L̇0, L̈0; L0#, j :5 @L̇0, L̈0; 2L1#,

fl
1 :5 @L̇0, L̈0; 2Ll 2 1#, fl

2 :5 @L̇0, L̈0; 2Ll#, if l [ 2Z,

fl
1 :5 @L̇0, L̈1; 2Ll 2 1#, fl

2 :5 @L̇0, L̈1; 2Ll#, if l [ 2Z 1 1,

f1 :5 @L̇0, L̈1; L0 1 L1#, f2 :5 @L̇0, L̈0; L2#, f3 :5 @L̇0, L̈1; L3#, . . . ,

fl 2 2 :5 @L̇0, L̈0; Ll 2 2#, if l [ 2Z, fl 2 2 :

5 @L̇0, L̈1; Ll 2 2#, if l [ 2Z 1 1,

fl 2 1 :5 @L̇0, L̈1; Ll 2 1

1 Ll#, if l [ 2Z, fl 2 1 :5 @L̇0, L̈0, Ll 2 1

1Ll], if l [ 2Z 1 1,

s1 :5 @L̇0, L̈l 2 1; L0 1 Ll 2 1#, t1 :5 @L̇0, L̈l 2 1; L1 1 Ll#,

s2 :5 @L̇0, L̈l; L0 1 Ll#, t2 :5 @L̇0, L̈l; L1 1 Ll 2 1#. [2]

I have also chosen the notations to make the comparisons with
the notations of ref. 12 easy (l corresponds to N on pp. 517 and
518 of ref. 12).

The univalences of the above representations are given by:

v1 5 vj 5 1, vfk
5 expSpik2

4l D , 1 # k # l 2 1,

vs1
5 vs2

5 expSpi
8 D , vt1

5 vt2
5 2expSpi

8 D .

By using the remark after Proposition 3.1 of ref. 4, the T matrix
can be chosen to be

Txy 5 dx.yvxexpS2pi
12 D , [3]

where vx is given as above. One can then determine the S matrix
[cf. (2) of Lemma 2.2 in ref. 3] for !Spin(M)13Spin(M)1ySpin(M)2

. The
notations in (7) have been chosen so that the S matrix is given
by Table 1.

Note that the Z2 action on !U(1)2l
given by AdJ as defined

before Lemma 5.1 is a proper action on !U(1)2l
. The reader

familiar with ref. 8 may notice that the action given by AdJ
corresponds to 21 isometry of rank one lattice vertex operator
algebras (cf. refs. 8 and 10). By using the branching rules in

Table 1. =8l 3 S matrix

Ï8l 3

S 1 j fl
j fk9 sj tj

1 1 1 1 2 =l =l
j 1 1 1 2 2=l 2=l
fl

i 1 1 (21)l 2(21)k9 bij bij

fk 2 2 2(21)k

4 cos
pkk9

2l
0 0

si =l 2=l bij 0 aij 2aij

ti =l 2=l bij 0 2aij aij

Here aij 5 Ï(ly2)(1 1 (2di, j 2 1)exp( 2 (pily2))), bij 5 ( 2 1)l 1 di, jÏl exp
(pily2), di, j is the usual Delta function, and 1 # i, j # 2.
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Section 4 of ref. 26, we can show:
LEMMA 5.3.

!Spin~M!1 3 Spin~M!1ySpin~M!2
. !U~1!2l

Z2 .

By Lemma 5.3 and Theorem 4.3, we have proved the following
theorem:

THEOREM 5.4. All irreducible representations of !U(1)2l

Z2 are given
by (2) for l $ 3. These irreducible representations give rise to a
unitary modular category whose S and T matrices are given by Table
1 and (3).

When l 5 2, Spin(4) 5 SU(2) 3 SU(2), one checks that
Theorem 5.4 still holds in this case, where the integrable weights
of LSpin(4) should be replaced by the integrable weights of
LSU(2) 3 LSU(2). When l 5 1, by using the fact that !U(1)2

.
!SU(2)1

, one can check that

!U~1!2

Z2 . !U~1!8
,

and !U(1)8
has already been studied in Section 3.5 of ref. 5.

Remark 5.5: The reader may wonder why we identify the
orbifold of !U(1)2l

with respect to the natural Z2 action as a coset
in Lemma 5.3 instead of considering such an orbifold directly as
in ref. 10. The reason is that the ‘‘twisted representations’’ in ref.
10 are defined only algebraically. To show that these ‘‘twisted
representations’’ in ref. 10 give rise to covariant representations
of our orbifold, one needs to study the analytical properties of
the twisted vertex operators in ref. 10, which are not trivial if one
tries this directly. On the other hand, there are no such problems
for cosets (cf. Remark 4.3). As noted before in Lemma 5.3, the
Z2 action on !U(1)2l

given by AdJ corresponds to the 21 isometry
of rank one lattice vertex operator algebras (cf. refs. 8 and 10).
The classification of irreducible representations of the orbifold
rank one lattice vertex operator algebras is given in ref. 10, which
corresponds to the first part of Theorem 5.4. We note that the S
matrix can be identified with the S matrix on Proofs 517 and 518
of ref. 12. However, there are mistakes in the S matrix on Proofs
517 and 518 of ref. 12 corresponding to the entries of aij, bij in
Table 1. Table 1 gives the correct S matrix.

6. More Examples and Questions
The lattice vertex operator algebras and their automorphism
groups provide a rich source of examples of orbifolds (cf. refs. 8,
10, and 27). I have determined the S, T matrices and hence the
fusion rules for the orbifold of rank 1 lattice Vertex Operator
Algebras in Theorem 5.4. It would be interesting to generalize
this theorem to higher-rank cases.

Let !SU(N)k
be the irreducible conformal precosheaf, and let

G be a finite subgroup of SU(N). Then there is a natural action
of G on !SU(N)k

, and it is easy to check that this action is proper
(if the action of G is not faithful, one can replace G by a quotient
G9 as explained in the footnote of Definition 3.1). By the results
of refs. 28 and 23, !SU(N)k

is completely rational. Hence Theorem
4.3 applies in this case, and we have a family of unitary modular
categories. It would be interesting to study these modular
categories in general.

Finally, let me mention that permutation orbifolds (cf. ref. 29
and refs. therein) provide another interesting class of orbifolds.
Let us formulate these orbifolds in our setting. Let ! be an
irreducible conformal precosheaf. Then the tensor product of !
with itself n times !Rn

:5 ! R ! R . . . R ! is also an irreducible
conformal precosheaf. Let G , Sn be a finite subgroup of Sn, the
permutation group on n letters. Note that any finite group is
embedded in a permutation group by Cayley’s theorem. There
is an obvious action of G on !Rn

by permuting the n tensors, and
one checks directly by definitions that this action of G on !Rn

is
proper as defined in Section 3. Note that if ! is m rational, so is
!Rn

by definition. If ! is m rational, by Theorem 2.6, we obtain
a large family of unitary modular categories from the orbifold
(!Rn

)G. The modular matrices of the unitary modular categories
associated with the permutation orbifolds above have been
written down on the basis of heuristic physics arguments in ref.
30. It would be interesting to do the computations in our
framework as in Section 4 and compare them with the results of
ref. 30.
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21. Böckenhauer, J. & Evans, D. E. (1998) Commun. Math. Phys. 197, 361–386.
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